

OIL & GAS GUIDE

This guide provides an overview of TracXP and AimSafety Oil & Gas products, applications and solutions for contractors, emergency responders, engineers, integrators and other safety professionals.

This publication is intended to serve as a guideline for the use of TracXP, AimSafety and Macurco products. It is not to be considered all-inclusive, nor is it intended to replace the policy and procedures for any facility. For application specific assistance please contact your local TracXP Representative or Macurco Sales at 1-877-367-7891

TABLE OF CONTENTS

Gas Detection 101	
Key Organizations	
Hazardous Locations Classification	
Personnel Safety	5-6
Area/Site Safety	7
Upstream (Exploration & Production)	8-9
Midstream (Gathering & Transportation)	10-11
Downstream (Refining & Processing)12-1	3
TracXP Control Panel Overview14	
Gas Transmitter Overview15	
Integral/Remote Sensor Configurations16	
Sample Draw Solutions17	
Flame Detection18-19	
Wireless Solutions	
Common Accessories 21	

GAS DETECTION 101

OIL & GAS HAZARDS TO BE AWARE OF

FLAMMABLE

- Having the right combination of an ignition source, oxygen, and fuel in a gas or vapor form provides for the necessary means to create a fire or explosion
- The minimum concentration of combustible gas or vapor necessary to support its combustion in air is defined as the Lower Explosive Limit (LEL). Below this level, the gas mixture is too "lean" to burn
- The maximum concentration of a gas or vapor that will burn in the air is defined as the Upper Explosive Limit (UEL). Above this level, the mixture is too "rich" to burn
- The range between the LEL and UEL is known as the flammable range for that gas or vapor
- Commonly encountered flammable gases include but are not limited to Methane / Natural Gas, Hydrogen, Propane, Ethylene, Propylene and Acetylene

тохіс

• Some gases are poisonous and are dangerous to life, even at very low levels. Some toxic gases have distinct odors Hydrogen Sulfide, Sulfur Dioxide, Benzene, Hydrogen Fluoride, Ammonia, and others have no odors at all (CO)

- Very low levels inhaled, ingested, or absorbed through the skin pose adverse effects from exposure
- Commonly encountered toxic gases including but are not limited to Hydrogen Sulfide,
 Sulfur Dioxide, Benzene, Hydrogen Fluoride, Ammonia, Hydrogen Chloride,
 Methyl Mercaptan, Nitrogen Dioxide and Volatile Organic Compounds

ASPHYXIANT OR OXYGEN DEPLETING

- Where Oxygen levels are too rich, environments have the potential to become an explosive environment
- When Oxygen levels are depleted, personnel may become drowsy, disoriented and even succumb to asphyxiation
- Common Oxygen displacing gases include Carbon Dioxide, Nitrogen as well as Oxygen consuming or depleting industrial processes

KEY ORGANIZATIONS

ICH STANDARDS ARE FOLLOWED?

FEDERAL ORGINIZATIONS

OSHA - Occupational Safety and Health Administration

The Occupational Safety and Health Administration establishes safety standards and regulations designed to protect workers from chemical exposure and other hazards in the workplace.

NIOSH - National Institute for Occupational Safety & Health

National Institute for Occupational Safety and Health conducts research and provides recommendations to improve worker safety and health.

EPA - Environmental Protection Agency

The Environmental Protection Agency regulates environmental aspects of oil and gas operations, including emissions and waste management.

BSEE - Bureau of Safety and Environmental Enforcement

The Bureau of Safety and Environmental Enforcement enforces safety and environmental regulations for offshore oil and gas operations.

CSB - Chemical Safety Board

The Chemical Safety Board investigates root causes of major incidents to drive chemical safety best practices.

DOT - Department of Transportation

The Department of Transportation regulates the transportation of hazardous materials, including oil and gas.

USACE - U.S. Army Corps of Engineers

The U.S. Army Corps of Engineers oversees the permitting process for pipeline projects and ensures compliance with environmental regulations while preventing significant adverse effects on natural resources.

INDUSTRY ASSOCIATIONS

The American Petroleum Institute develops industry standards for safety, environmental protection, and operational efficiency.

IOGP - International Association of Oil & Gas Producers

International Association of Oil & Gas Producers promotes best practices and standards for safety and environmental management in the oil and gas sector.

GCA - Gas Compressor Association

The Gas Compressor Association is focused on promoting health and safety initiatives, as well as environmental compliance, within the natural gas compression industry.

ISO - International Organization for Standardization

The International Organization for Standardization (ISO) develops international standards that enhance safety and efficiency in oil and gas operations.

CGA - Compressed Gas Association

The Compressed Gas Association develops and publishes safety standards and practices for industrial and medical gas supply industries.

AIHA - American Industrial Hygiene Association

The American Industrial Hygiene Association advocates for worker and community health by coordinating research on exposure sampling methodologies and promoting best practices for occupational and environmental health and safety.

JURISDICTIONAL BODIES

RRC - Railroad Commission of Texas State and Local Specific Oil and Gas Associations

HAZARDOUS LOCATIONS CLASSIFICATION

Hazardous location classification, also known as hazardous area classification, is a system used to identify and categorize areas where the presence of flammable gases, vapors, liquids, combustible dust, or other hazardous materials creates a potential risk of fire or explosion. This classification is crucial for ensuring safety in upstream, midstream and downstream applications.

The classification process typically involves several key steps:

- 1. **Identify Hazardous Substances:** Determine the types of hazardous materials present in the area. These materials are typically categorized into classes, divisions, and groups based on their properties.
 - Gases and Vapors: These materials are classified into various groups based on their ignition properties and characteristics.
- 2. **Determine Classes and Divisions:** Area classification is determined based on the likelihood of the flammable gases and vapors present along with the potential duration of their presence. Hazardous areas are typically divided into classes and divisions:
 - **Division System:** In the Division system, areas are classified into Divisions 1 and 2. Division 1 denotes that the hazardous substance is present during normal operations, while Division 2 indicates that the hazard may be present under abnormal conditions.

PERSONNEL SAFETY

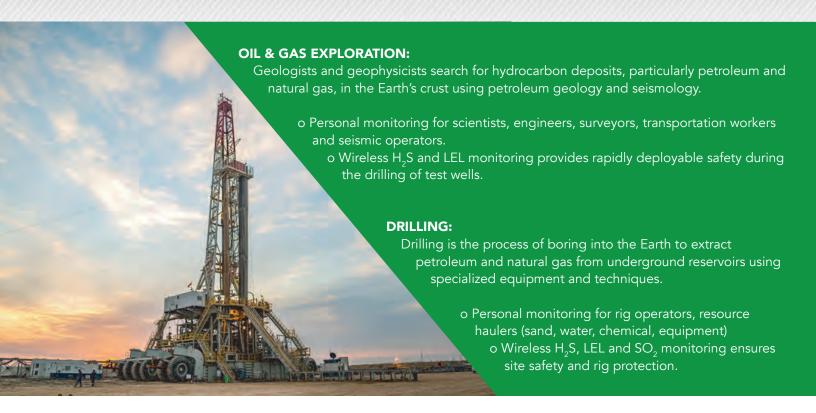
Personal Monitoring: The use of wearable gas monitors ensures one's safety in environments where toxic and/or combustible gases may be present. Lightweight AimSafety portable gas detectors are simple to operate and designed to be worn conveniently in the breathing zone of a worker. These critical components ensure the ultimate in personnel safety within the workplace for facility employees, trucking and transportation operators, contractors, temporary workers and site visitors alike.

PERSONNEL SAFETY

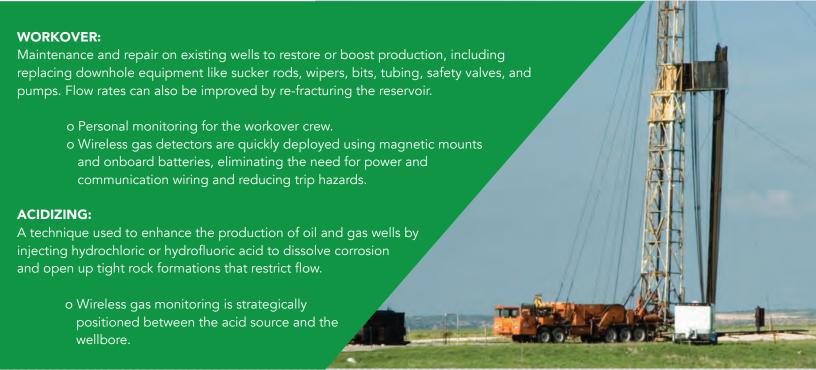
Single Gas: A cost-effective, low-maintenance solution for single gas hazards. Features 2-year battery life with no charging or replacement needed, and audible, visual, and haptic alarms. Available sensors include CO, H₂S, O₂, H₂, SO₂, NH₃, and more.

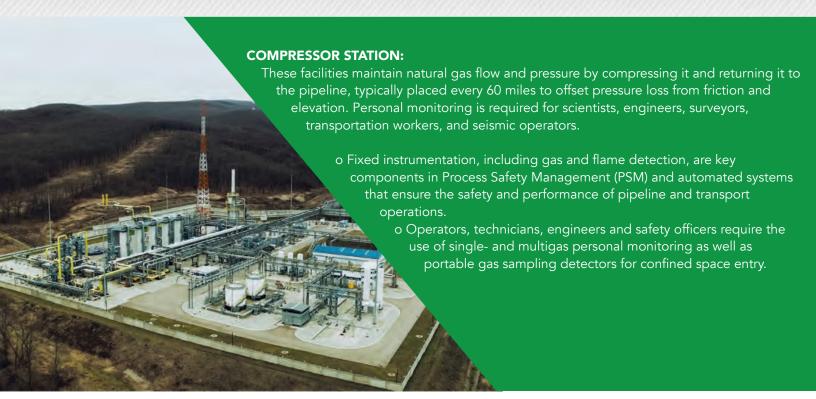
Multi Gas: Rugged and cost-effective, the PM400 delivers accurate readings for CO, H_2S , O_2 , and combustible gases (LEL). Choose from IR sensors for longer battery life, inert atmosphere operation, and resistance to poisons/inhibitors, or catalytic bead sensors for H_2 detection (requires O_2 to function). Ideal for demanding environments, with reliable data logging and performance.

Multigas w/ Integral Pump: The newest in the AimSafety lineup, the PM500 is a rugged, pump-driven handheld monitor that can detect up to six gases simultaneously. It comes standard with CO, H₂S, O₂, and LEL sensors, and can be equipped with a PID for VOCs like benzene. Additional sensors include SO₂, NH₃, NO₂, and CO₂. Use the TXP-SPK probe kit or extended tubing for safe sampling in confined or hard-to-reach spaces. Choose your LEL sensor based on application-specific hazards.

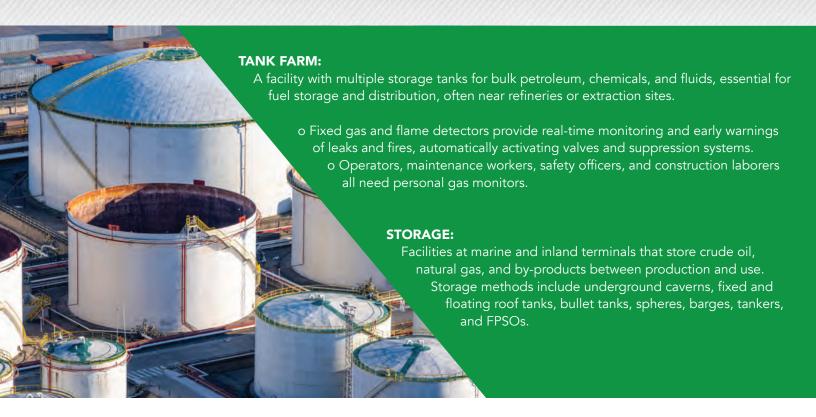

Performance and Documentation: AimSafety bump test and calibration stations are the best method for ensuring best-in-class portable gas monitor performance and accuracy. The PM100 and PM400 stations are designed for use with up to four monitors at a time, whereas the PM500 comes in a single-bay configuration.

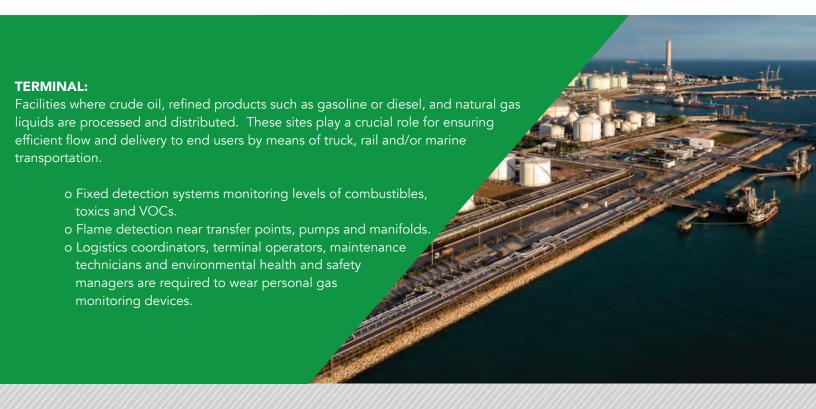
AREA / SITE SAFETY

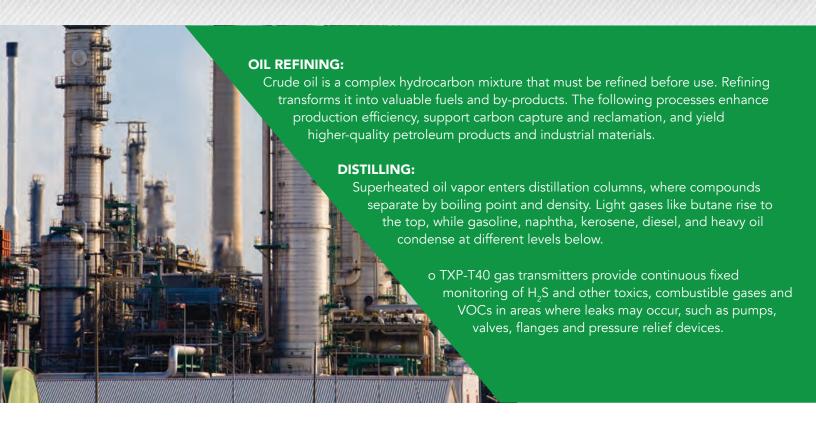

UPSTREAM (EXPLORATION AND PRODUCTION)



UPSTREAM (EXPLORATION AND PRODUCTION)




MIDSTREAM (GATHERING & TRANSPORTATION)



MIDSTREAM (GATHERING & TRANSPORTATION)

DOWNSTREAM (REFINING / PROCESSING)

DOWNSTREAM (REFINING / PROCESSING)

REFORMING:

CORROSIV

A chemical process that restructures hydrocarbons to convert low-octane naphtha into high-octane reformate, a key gasoline blending stock. Reformate also contains benzene and toluene, aromatic compounds used in plastic production.

o Hydrogen (H₂) is generated during this step and reused in other refining processes like hydrotreating.

TREATMENT:

Techniques remove contaminants like nitrogen, sulfur, heavy metals, and VOCs (e.g., benzene). Hydrodesulfurization (hydrotreating) is the most common, using hydrogen, absorption columns, or acids to separate impurities. Recovered materials are often sold as industrial feedstock.

o SO₂, H₂S, and C₆H₆ are common by-products and hazards of hydrotreating and can be detected using AimSafety portable monitors or TracXP industrial transmitters.

NATURAL GAS PROCESSING:

Similar to crude oil, raw natural gas requires extensive processing to produce pipeline-quality product suitable for distribution and use.

- o Purification: Removes water, CO₂, H₂S, mercury, nitrogen, and other contaminants to ensure gas safety and efficiency.
- o Liquefaction: Cools natural gas to –260°F, turning it into liquid for easier transport.
- o Separation: Isolation of lighter hydrocarbons, such as ethane, propane, and butane, allows them to be sold as valuable by-products due to their high energy content.
- o Odorization: The introduction of methyl mercaptan (CH₃SH) to natural gas is a safety process implemented to ensure that the otherwise odorless gas has a detectable smell and can easily be identified if a leak occurs.

TRACXP CONTROL PANEL OVERVIEW

TXP-WCR TXP-C40 TXP-C16X TXP-C64

*Class I Division 2 polycarbonate/fiberglass panels shown above. Class I Division 1, NEMA 7 options available. Contact your local TracXP sales representative for additional information.

TXP CONTROL PANEL FEATURES

	TXP-WCR	TXP-C40	TXP-C16X	TXP-C64
Total Sensor Channels	32	4	16	64
Onboard Relays	8	2	5	5
Optional Add-on Relays	NO	6	32	64
Total Relay Options	8	8	37	69
4-20mA Analog Outputs	NO	UP TO 4	UP TO 16	UP TO 64
4-20mA Analog Inputs	NO	UP TO 4	UP TO 16	UP TO 64
Modbus RS-485 I/O	1 (ADD-ON)	1 (ADD-ON)	2 (STANDARD)	2 (STANDARD)
Embedded Webpage	YES (ADD-ON)	NO	YES	YES
Color Indicating Display	NO	NO	YES	YES
900 MHz Wireless Radio	YES	NO	YES (ADD-ON)	YES (ADD-ON)

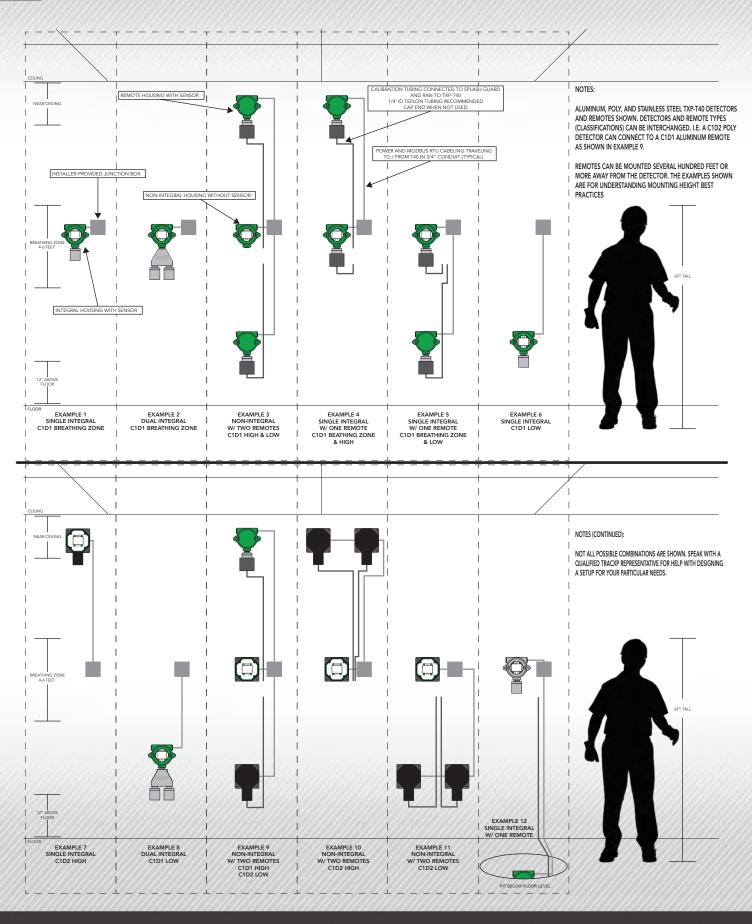
GAS TRANSMITTER OVERVIEW

TXP-T40 Wired Transmitter

- Certified for Class I, Division 1 or Division 2
- Status indicating color LCD TFT display
- Displays gas values, units of measurement, trend graphs and alarm levels
- Dual integral or remote sensor capable
- Modbus TCP/IP® Ethernet port with web server
- Three configurable 5A relays and a fault relay
- Dual Modbus® RS-485 RTU (Digital)
- Dual 4-20mA output (Analog)

TXP-WTA Wireless Transmitter

- Robust 900 MHz Radio
- Powered by disposable lithium battery
- Dual integral sensor capable
- Magnetic mount option
- Class I, Div. 2 (CID1 option available)
- Five LED indication for alarms (3) and communication status (2)

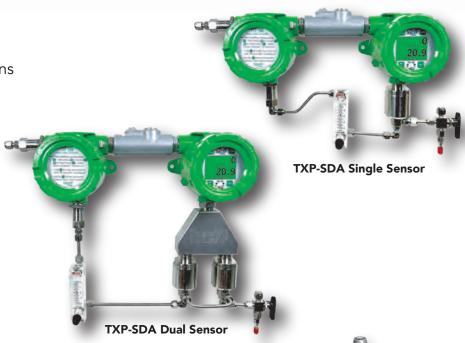


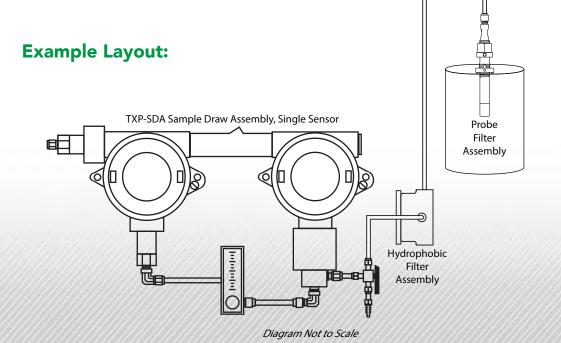
GAS SENSOR OPTIONS & RANGES

Gas Name	Symbol	Range & Measurement	Vapor Density (kg/m³)	%LEL	%UEL	Recommend Mounting Height		
Toxic Gases								
Ammonia	NH₃	0-100, 0-200, 0-300, 0-500 PPM	0.59	15	28	Roughly 12-18" from the ceiling		
Carbon Dioxide	CO ₂	0-5,000 PPM, 0-5%, 0-100% VOL	1.842	NA	NA	Roughly 12-18" from the floor		
Carbon Monoxide	CO	0-50, 0-200, 0-1,000, 0-2,000 PPM	1.14	12.5	74	Breathing Level 4-6"ft AFF		
Hydrogen Chloride	HCI	0-100 PPM	1.6397	NA	NA	Roughly 12-18" from the floor		
Hydrogen Fluoride	HF	0-40 PPM	0.92	NA	NA	Roughly 12-18" from the ceiling		
Hydrogen Sulfide	H ₂ S	0-25, 0-50, 0-100, 0-200, 0-500, 0-1,000 PPM	1.53	4	44	Roughly 12-18" from the floor		
Mercaptan	CH₃SH	0-10 PPM	1.60	4.1	21	Roughly 12-18" from the floor		
Nitrogen Dioxide	NO ₂	0-10, 0-20 PPM	3.66	NA	NA	Roughly 12-18" from the floor		
Oxygen	O ₂	0-25% VOL	1.331	NA	NA	Breathing Level 4-6"ft AFF		
Sulfur Dioxide	SO ₂	0-20 PPM	2.26	NA	NA	Roughly 12-18" from the floor		
		Combusti	ble Gases					
General Combustibles	Various	0-100% LEL	Gas Dependent	-	-	Gas Dependent		
Acetylene	C ₂ H ₂	0-100% LEL	1.092	2.5	100	Breathing Level 4-6"ft AFF		
Benzene	C ₆ H ₆	0-10 PPM, 0-2,000 PPM, 0-100% LEL	3.19	1.2	8.0	Roughly 12-18" from the floor		
Butane	C4H10	0-100% LEL	2.6	1.6	8.4	Roughly 12-18" from the ceiling		
Ethane	C ₂ H ₆	0-100% LEL	1.355	3.0	12.4	Roughly 12-18" from the floor		
Ethylene	C ₂ H ₄	0-100% LEL	1.18	2.7	28.6	Breathing Level 4-6"ft AFF		
Hydrogen	H ₂	0-10,000 PPM, 0-100% LEL	0.0899	4	75	Roughly 12-18" from the ceiling		
Methane	CH ₄	0-100% LEL, 0-100% VOL	0.55	5	15	Roughly 12-18" from the ceiling		
Propane	C3H8	0-100% LEL	1.882	2.1	9.5	Roughly 12-18" from the floor		
Volatile Organic Compounds	VOC	0-10, 0-200, 0-2,000, 0-4,000 PPM	Gas Dependent	1/////	991111	Gas Dependent		

^{*}For additional gases and ranges, contact your local TracXP representative.

INTEGRAL/REMOTE SENSOR CONFIGURATIONS




TXP-SDA SAMPLE DRAW SOLUTIONS

The TracXP TXP-SDA Sample Draw Assembly is designed to pull a gas sample from limited access or hostile environment applications where fixed gas detectors cannot be directly installed such as tank headspaces, scrubbers, ducts, vessels, wet wells, sumps, confined spaces and other challenging applications.

Features:

- Suitable for Class I, Division 1 applications
- Supports single or dual-sensor configurations
- Utilizes all sensors within the TXP-T40 product offering
- Vivid status indicating color display
- Dedicated calibration port allows for calibrations at sample flow to ensure maximum accuracy
- Flow interruption fault indication
- Proper filtration protects equipment, ensures accuracy and maintains system performance

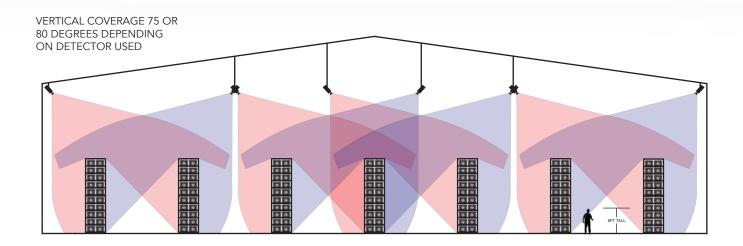
97-8000-0200-03 Probe Filter

97-8000-0200-00 Hydrophobic Filter

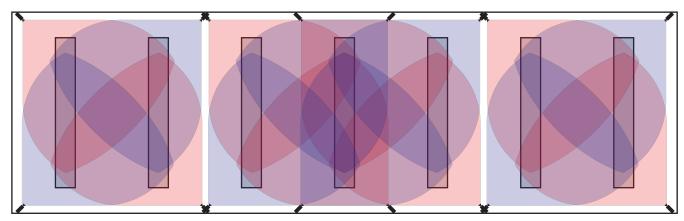
FLAME DETECTION

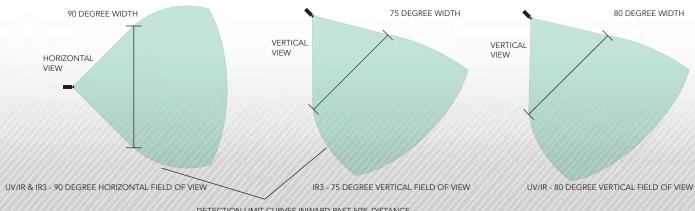
Features:

- IR3 and UV/IR models available for detection of hydrocarbon and/or non-hydrocarbon flames
- High immunity to false alarm
- Ultra-fast response to explosions and fireballs
- Three relay contacts (two alarm and a fault)
- 4-20mA analog with HART® 7.0
- Modbus RS-485 RTU outputs
- Internal tests for window clarity and operation
- Window heater to avoid icing and condensation
- Tilt mount included for two-axis adjustments
- HD camera option provides live monitoring and automatic video recording of fire events


Flame simulators are often used to perform detector testing during commissioning and periodic system testing. The TXP-FDE simulators are inexpensive, lightweight and simple to use. The modern ergonomic design, with alignment markers, allows accurate, fast and convenient detector performance verification. Suitable for use in hazardous areas, the TXP-FDE flame simulators can be used at distances of up to 23 feet (7 meters) from the detector. Three different models are available for testing each type of TXP-FDE Flame Detector (IR3, IR3-H2 and UV-IR).

Application	UV/IR	IR3	IR3-H2
Chemical, Fuel & Solvent Storage (Indoor)	Best*	Good	
Chemical, Fuel & Solvent Storage (Outdoor)	Good	Best*	
Hydrocarbon Storage & Processing	Good	Best	
Hydrogen Storage & Processing	Good		Best
Tanker Loading Racks	Good	Best	
Laboratories	Best*	Good	
Terminals: Truck, Rail, & Marine	Good	Best	
Machinery Operations	Best*	Good	
Pipeline Compressor Stations	Good	Best	100000
Produced Water Disposal Facilities	Good	Best	


^{*}Applications may vary due to fuel source, materials and chemicals on site. Contact Macurco for guidance on model selection.


EXAMPLES OF DESIGNING A FLAME DETECTION SOLUTION

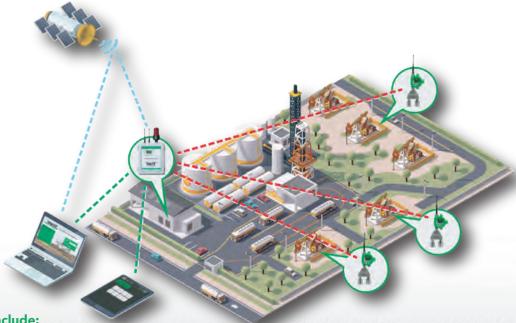
DETECTORS SHOULD BE PLACED AND AIMED FOR MAXIMUM COVERAGE OF SENSITIVE AREAS WITH ACCOUNT OF OVERLAP
FLAME DETECTOR TYPE USED DEPENDS ON POTENTIAL FLAME TYPE

HORIZONTAL COVERAGE 90 DEGREES TYPICAL

TRACXP WIRELESS SOLUTIONS

There are many forms of wireless communication used within the TracXP product family.

900 MHz


900 MHz is a robust, license free (North America) radio band used for local communications and transmits up to two to three miles line-of-sight (LOS). This is how the interaction occurs between the Wireless Transmitter Assembly (TXP-WTA), the Wireless Control Receiver (TXP-WCR) and the Wireless Alarm Relay (TXP-WAR). The TXP-WAR is the core of our wireless notification, such as the Alarm Notification Assembly (TXP-ANA) or the Wireless Alarm Bar (TXP-WABX). If distance needs to be increased, a Wireless Radio Repeater (WRR) is available. Prior to installation and set up, all monitoring points should be validated for signal strength via the Signal Validation Tool (TXP-SVT).

Wi-Fi

Wi-Fi is a family of wireless network protocols commonly used for local area networking of devices and internet access. This is an add-on option for the TXP-WCR, and provides real-time notification of site-specific alarm and trouble conditions. Remote programming of alarm setpoints and other configurable options is also possible with this technology. Wi-Fi on the TXP-WCR uses the 2.4 GHz radio band.

Satellite

Satellite communciations utilize high frequency radio waves to enable data transmission in remote locations. Our Remote Monitoring Solution (TXP-RMS) delivers real-time field and operational intelligence for any wireless or wired gas detection system. The TXP-RMS is available in both non-hazardous and Class 1, Division 2 configurations, and provides users with a secure method for data collection and a convenient way to view and analyze it. This solution supports economical satellite transmission through communication of alarm and trouble events and exceptions in lieu of streaming data.

TXP-RMS features include:

- Automated Phone Callout (APC) functionality includes phone, text messaging and email communication
- Requires remote acknowledgment for callout cancellation
- Continuous datalogging provides historical event logging and data archival
- 24/7/365 real-time knowledge of what's happening, where and when
- Geographical mapping functionality provided through a user-friendly Graphical User Interface (GUI) supports multiple sites

COMMON ACCESSORIES

CALIBRATION KIT

COMBO ALARMS

HORNS

STROBES

AIMSAFETY PORTABLES

AimSafety by Macurco blends over 50 years of gas detection innovation and development into new, advanced gas monitor solutions that help organizations protect workers and the community, and increase safety, compliance and revenue.

PM100 Single-Gas Options: Carbon Monoxide (CO), Hydrogen Sulfide (H_2S), Oxygen (O_2), Ammonia (NH_3), Sulfur Dioxide (SO_2), Nitrogen Dioxide (NO_2), or Hydrogen (H_2).

PM400 Multi-Gas: Hydrogen Sulfide (H_2S), Carbon Monoxide (CO), Oxygen (O_2) and Combustibles (LEL IR or Catalytic Bead).

PM500 Multi-Gas w/ Pump: Hydrogen Sulfide (H₂S), Carbon Monoxide (CO), Oxygen (O₂) and Combustibles (LEL IR or Catalytic Bead). Additional gases include VOCs (PID), SO₂, NH₃, NO₂ and others.

The Macurco product line offers equipment for industrial, commercial, and residential applications. Headquartered in Sioux Falls, South Dakota, Macurco strives to provide the highest quality detection, safety and security solutions to customers worldwide. Whether you are looking for monitoring specific gases in potentially hazardous environments, personal safety, building automation or HVAC system, or gas detection for a security system, Macurco has a gas detector to meet your needs.

Visit **www.macurco.com** for additional product information and training.

